the fuel system from the tank outlets to each engine is pressurized, under all intended operations, so as to prevent vapor formation, or must be shown by climbing from the altitude of the airport elected by the applicant to the maximum altitude established as an operating limitation under §25.1527. If a climb test is elected, there may be no evidence of vapor lock or other malfunctioning during the climb test conducted under the following conditions: - (1) For reciprocating engine powered airplanes, the engines must operate at maximum continuous power, except that takeoff power must be used for the altitudes from 1,000 feet below the critical altitude through the critical altitude. The time interval during which takeoff power is used may not be less than the takeoff time limitation. - (2) For turbine engine powered airplanes, the engines must operate at takeoff power for the time interval selected for showing the takeoff flight path, and at maximum continuous power for the rest of the climb. - (3) The weight of the airplane must be the weight with full fuel tanks, minimum crew, and the ballast necessary to maintain the center of gravity within allowable limits. - (4) The climb airspeed may not exceed— - (i) For reciprocating engine powered airplanes, the maximum airspeed established for climbing from takeoff to the maximum operating altitude with the airplane in the following configuration: - (A) Landing gear retracted. - (B) Wing flaps in the most favorable position. - (C) Cowl flaps (or other means of controlling the engine cooling supply) in the position that provides adequate cooling in the hot-day condition. - (D) Engine operating within the maximum continuous power limitations. - (E) Maximum takeoff weight; and - (ii) For turbine engine powered airplanes, the maximum airspeed established for climbing from takeoff to the maximum operating altitude. - (5) The fuel temperature must be at least 110 $^{\circ}$ F. - (b) The test prescribed in paragraph (a) of this section may be performed in flight or on the ground under closely simulated flight conditions. If a flight test is performed in weather cold enough to interfere with the proper conduct of the test, the fuel tank surfaces, fuel lines, and other fuel system parts subject to cold air must be insulated to simulate, insofar as practicable, flight in hot weather. [Amdt. 25–11, 32 FR 6912, May 5, 1967, as amended by Amdt. 25–57, 49 FR 6848, Feb. 23, 1984] ## §25.963 Fuel tanks: general. - (a) Each fuel tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads that it may be subjected to in operation. - (b) Flexible fuel tank liners must be approved or must be shown to be suitable for the particular application. - (c) Integral fuel tanks must have facilities for interior inspection and repair. - (d) Fuel tanks within the fuselage contour must be able to resist rupture and to retain fuel, under the inertia forces prescribed for the emergency landing conditions in §25.561. In addition, these tanks must be in a protected position so that exposure of the tanks to scraping action with the ground is unlikely. - (e) Fuel tank access covers must comply with the following criteria in order to avoid loss of hazardous quantities of fuel: - (1) All covers located in an area where experience or analysis indicates a strike is likely must be shown by analysis or tests to minimize penetration and deformation by tire fragments, low energy engine debris, or other likely debris. - (2) All covers must be fire resistant as defined in part 1 of this chapter. - (f) For pressurized fuel tanks, a means with fail-safe features must be provided to prevent the buildup of an excessive pressure difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–40, 42 FR 15043, Mar. 17, 1977; Amdt. 25–69, 54 FR 40354, Sept. 29, 1989] ## § 25.965 Fuel tank tests. (a) It must be shown by tests that the fuel tanks, as mounted in the airplane,